

ADITYA DEGREE COLLEGE

Affiliated to Adikavi Nannaya University | Approved by APSCHE | Accredited by NAAC with B⁺⁺ Grade Lakshminarayana Nagar, Kakinada - 533 003, Andhra Pradesh

🛇 0884 - 2376665 🛛 📾 adckkd@aditya.ac.in https://www.aditya.ac.in/degree

SEMES	COURSE	co						PR	OG	RA]	MN	ИЕ	OUI	CO	MES	5			
TER	NAME	CO	COURSE OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
		CO1	Recap the limitations of classical mechanics at molecular length scales	2		3	2						3	2				3	
		CO2	Understand the difference between quantum and classical mechanics	2		3	2	2					2	3			2		
	GENERAL	CO3	Apply the principles of quantum mechanics to simple model systems relevance within chemistry		2	3	3	2			3			2				2	
	CHEMISTRY - I	CO4	Analyse for the basic principles and concepts of quantum mechanics	3		3	2	3	2		3		2	2				2	
т				CO5	Justify different molecular parameters for simple molecules from their electromagnetic spectra	3		2	2	3	2		3		3	3			
1		CO6	Design the general concepts of chemistry and to impart knowledge	3	3	3		2	3	2	3			2		2	2		
		CO1	Identify the complex compounds from various inorganic molecules	3		3	2	2			3	2					2	3	
	INORGANIC CHEMISTRY-I	CO2	Illustrate the differences between complexs and cage compounds	nd cage 2 2 2 3 2	2		3		2	3			2	3					
		CO3	Apply the Principles of Coordination chemistry to natural chemical compounds	3	3	2	3	2	2		2	2	2					2	
		CO4	Analyse chemical problems related to Inorganic chemistry	2	2	3	3	2	3	2				2			3	2	

CO - PO MAPPING - M.Sc., ORGANIC CHEMISTRY

		СО	COURSE OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		CO5	Evaluate results obtained through structure modelling and analysis of inorganic molecules	2	2	2	3		2		3		2	3			2	3
		CO6	Synthesise compounds of structural importance	3		3	2	2			3	2					2	3
		CO1	Identify the aromatic compounds and non-aromatic compounds			3	2											
		CO2	Explain the basic polarisation effects	2		3	2	2					2	3			2	
	ORGANIC	CO3	Determine the reactivity of functional groups	2	2	2	3		2		3		2	3			2	3
	CHEMISTRY-I	CO4	Sketch the mechanisms of single step organic reactions	2	2	2	3		2		3		2	3			2	3
		CO5	Predict the stereochemistry of organic molecules	3		3	2	2			3	2					2	3
		CO6	Synthetic methods of heterocyclic compounds	2	2	2	3		2		3		2	3			2	3
		CO1	Recall the definitions of thermodynamics and physical properties of molecules	3	3	3		2	3	2	3			2			2	
		CO2	Explain the dependency of temperature and pressure on phase titrations	2		3	2						3	2				3
	PHYSICAL	CO3	Apply the principles and laws of equilibrium thermodynamics to multicomponent system	2		3	2	2					2	3			2	
	CHEMISTRY - I	CO4	Characterise elementary laws of chemical kinetics	2	2	2	3		2		3		2	3			2	3
		CO5	Justify the laws of thermodynamics	2	2	2	3		2		3		2	3			2	3
		CO6	Formulate equations and functions representing kinetic behaviour of the chemical systems	3		3	2	2			3	2					2	3
	GENERAL	CO1	Recall the symmetry elements	2	2	2	3		2		3		2	3			2	3
II	CHEMISTRY - II	CO2	Recognise the structure of atom, radial and angular probability	3		3	2	2			3	2					2	3

	СО	COURSE OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	CO3	Determine the symmetry operations of small and medium sized molecules	2	2	2	3		2		3		2	3			2	3
	CO4	Analyse the statistical parameters of analytical data	2	2	3	3	2	3	2				2			3	2
	CO5	Justify between accuracy and precession	2	2	2	3		2		3		2	3			2	3
	CO6	Develop elementary programs in Fortran for performing scientific calculations.	3		3	2	2			3	2					2	3
	CO1	List the properties of organometallic compounds	3		2	2	3	2		3		3	3				2
	CO2	Demonstrate advanced concepts of Inorganic chemistry	3	3	3		2	3	2	3			2			2	
INORGANIC	CO3	Test the role of inorganic molecules in biological processes	3		3	2	2			3	2					2	3
CHEMISTRY-II	CO4	Differentiate between quantitative experiments and qualitative experiments	2	2	2	3		2		3		2	3			2	3
	CO5	Evaluate the reaction mechanisms predicted for inorganic reactions	2	2	3	3	2	3	2				2			3	2
	CO6	Synthesise inert and labile complexes	2	2	2	3		2		3		2	3			2	3
	CO1	State various named reactions involved in carbonyl chemistry	3		3	2	2			3	2					2	3
	CO2	Explain the reaction mechanism of organic reactions	3		3	2	2			3	2					2	3
ORGANIC	CO3	Apply the idea about protection and deprotection of functional groups	2		3	2	2					2	3			2	
CHEMISTRY-II	CO4	Analyse the organic molecules using spectroscopic methods	2	2	2	3		2		3		2	3			2	3
	CO5	Conclude the functional groups by separation of organic molecules	2	2	2	3		2		3		2	3			2	2
	CO6	Prepare derivatives of organic ompounds with specific functional groups	3		3	2	2			3	2					2	3

		со	COURSE OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		CO1	Identify the fundamental principle of magnetic resonance through theory and implement to simple examples	2	2	2	3		2		3		2	3			2	3
		CO2	Recognise the fundamental princiles of statistical thermodynamics	3		3	2	2			3	2					2	2
	PHYSICAL	CO3	Applications of equations representing electrochemical cell	2	2	2	3		2		3		2	3			2	3
	CHEMISTRY - I	CO4	Analyse thermodynamic parameters unsing partition functions	2	2	3	3	2	3	2				2			3	2
		CO5	Justify the thermodynamic parameters using emf data	2	2	2	3		2		3		2	3			2	3
		CO6	Develop applications using electrochemical cells	2	2	3	3	2	3	2				2			3	2
		CO1	Recall substitution reactions and addition reactions	3		2	2	3	2		1		3	3				2
	ORGANIC	CO2	Explain various types of aliphatic nucleophilic substitution reactions	3	3	3		2	3	2	3			2			2	
	REACTION MECHANISM -I	CO3	Apply reaction mechanism to aromatic compounds	2		3	2						3	2				3
	AND PERICYCLIC	CO4	Analyse various types of pericyclic reactions characterise their properties	2		3	2	2					2	3			2	
III	REACTIONS	CO5	Predict the Fmo and Pmo approaches of pericyclic reactions	2	2	2	3		2		3		2	3			2	3
		CO6	Build methods for asymmetric synthesis	2	2	2	3		2		3		2	3			2	2
		CO1	Define the principles involved in spectroscopic techniques	3		3	2	2			3	2					2	3
	ORGANIC SPECTROSCOP	CO2	Discuss the principles involved in UV, IR, NMR and Mass spectroscopies	2	2	2	3		2		3		2	3			2	2
	Y-I	CO3	Apply the Woodward Hofmann rules for calculating absorption maximum in dienes and carbonyl compounds	3		3	2	2			3	2					2	3

		СО	COURSE OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		CO4	Characterise the functional groups using IR spectral data	3		2	2	3	2		3		3	3				2
		CO5	Predict the chemical shift values using NMR spectra	3	3	3		2	3	2	3			2			2	
		CO6	Design the mass spectral fragmentations of various functional group molecules	2		3	2						3	2				3
		CO1	Recall the elimination reactions	2		3	2	2					2	3			2	
		CO2	Have the core idea about advanced organic chemistry and develop research oriental skills	2	2	2	3		2		3		2	3			2	3
	ORGANIC	CO3	understand the concept and definition of named reactions, carbon carbon single and double bond reactions	2	2	2	3		2		3		2	2			2	3
	SYNTHESIS - I	CO4	In depth knowledge about organic chemistry synthetic strategies	2	2	2	3		2		3		2	3			2	2
		CO5	Describe and apply protecting group in organic functional groups	3		3	2	2			3	2					2	3
		CO6	Achievement of advance knowledge about synthetic applications of PTC and crown ethers.	2	2	2	3		2		3		2	3			2	3
		CO1	Have the core ideal about different natural products- classification and isolation	3		3	2	2			3	2					2	2
		CO2	understand the concept and definition of alkaloids and general methods for structural elucidation	2	2	2	3		2		3		2	3			2	3
	CHEMISTRY OF NATURAL	CO3	In depth knowledge about natural products with a focus on isolation and structure of drugs	2	2	2	3		2		3		2	3			2	3
	PRODUCTS	CO4	Describe and apply biological activity of drugs	3		3	2	2			3	2					2	3
		CO5	Evaluate the knowledge of chemistry of natural products and drug action	2	2	2	3		2		3		2	3			2	2
		CO6	Prepare natural drugs from plants	3		3	2	2			3	2					2	3
IV	ORGANIC REACTION	CO1	Recall nucleophilic aromatic substitution reactions and benzyne mechanism	2	2	2	3		2		3		2	3			2	3

I	HANISM - I AND	со	COURSE OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	OCILIVIIS	CO2	Explain NGP mechanism in aliphatic electrophilic substitution reactions	3		2	2	3	2		3		3	3				2
	TRY	CO3	Determination of photo process using Jablonski diagrams	3	3	3		2	3	2	3			2			2	
		CO4	Analyse photochemistry of olefins, enones, dienones and aromatic compounds	2		3	2						3	2				3
		CO5	Assess the photochemistry of isomerisation reactions, carbonyl compounds	2		3	2	2					2	3			2	
		CO6	Synthesise the cyclic compounds, olefins, rearranged molecules using the principles of photochemistry	2	2	2	3		2		3		2	3			2	3
		CO1	Recap the Principles of ultra violet spectroscopy and IR spectroscopy	2		3	2	2					2	3			2	
		CO2	Explain the concepts of Optical Rotatory Dispersion phenomenon	2	2	2	3		2		3		2	3			2	3
-	RGANIC TROSCOP	CO3	Apply the basic principles of NMR spectroscopy in structural elucidation	2	2	2	3		2		3		2	3			2	3
SPEC		CO4	Determine the methods to characterise compounds by 2D NMR spectroscopy	3		3	2	2			3	2					2	3
		CO5	Predict the unknown organic molecules using spectral data			3	2											
		CO6	Formulate the methods of separations by TLC, GC and Column chromatography.	2		3	2	2					2	3			2	
		CO1	Recall the concept of oxidations and reductions	2	2	2	3		2		3		2	3			2	3
		CO2	Formulate the mechanism of organic reactions using oxidations and reductions	2	2	2	3		2		3		2	3			2	3
-	ORGANIC SYNTHESIS - II	CO3	Learn and identity many organic reaction mechanisms using oxidising and reducing agents	3		3	2	2			3	2					2	3
		CO4	Correlate and describe the stereochemical properties of organic molecules	2	2	2	3		2		3		2	3			2	3
		CO5	Justify the synthetic applications of organo silanes	3		2	2	3	2		3		3	3				2

	СО	COURSE OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	CO6	Synthesise organic molecules using retro synthetic analysis	3	3	3		2	3	2	3			2			2	
	CO1	Recall the structure elucidation methods of natural products	2		3	2						3	2				3
	CO2	Have the core ideal about bio organic chemistry and recent research	2		3	2	2					2	3			2	
BIO-ORGANIC	CO3	Understand the concept and definitions of biopolymers, vitamins and bio molecules	2	2	2	3		2		3		2	3			2	3
CHEMISTRY	CO4	In depth knowledge of antibiotics and anti malarials	2		3	2						3	2				3
	CO5	Justify biological activity of vitamins and nucleic acids	2		3	2	2					2	3			2	
	CO6	synthesise DNA, RNA and hydrolysis products	2	2	2	3		2		3		2	3			2	3