
Data Structure & Algorithms

presented by
J . KRISHNA CHANDRIKA

ASSISTANT PROFESSOR

COMPUTER SCIENCE

Data Structure

Data: Collection of raw facts.

Data structure is representation of the logical relationship existing
between individual

elements of data.

Data structure is a specialized format for organizing and storing data in
memory that considers not only the elements stored but also their
relationship to each other.

Classification of Data Structure

Primitive Data Structure

There are basic structures and directly operated upon by the machine
instructions.

Data structures that are directly operated upon the machinelevel
instructions are known as primitive data structures.

Integer, Floatingpoint number, Character constants, string constants,
pointers etc, fall in this category.

The most commonly used operation on data structure are broadly
categorized into following types:

• Create

• Selection

• Updating

• Destroy or Delete

NonPrimitive Data Structure

The Data structures that are derived from the primitive data structures
are called Nonprimitive data structure.

The nonprimitive data structures emphasize on structuring a group of
homogeneous (same type) or heterogeneous (different type) data items.

Linear Data structures:

NonLinear Data structures:

Abstract Data Type (ADT)

ADT is a collection of data and a set of operations that can be performed
on the data.

It enables us to think abstractly about the data

We can separate concepts from implementation.

Typically, we choose a data structure and algorithms that provide an
implementation of an ADT.

THANK YOU….

LISTS…

presented by
J . KRISHNA CHANDRIKA

ASSISTANT PROFESSOR

COMPUTER SCIENCE

Linear List

□ Linear list is a data object whose instances are of the form (e1 ,e2 ,. . . ,
en)

□ ei is an element of the list.

□ e1 is the first element, and en is the last element.

□ n is the length of the list.

□ When n = 0, it is called an empty list.

□ e1 comes before e2 , e2 comes before e3 , and so on.

Implementations of Linear List

Arraybased (Formulabased)

Uses a mathematical formula to determine where (i.e., the memory
address) to store each element of a list

Linked list (Pointerbased)
The elements of a list may be stored in any arbitrary set of locations

Each element has an explicit pointer (or link) to the next element

Indirect addressing

The elements of a list may be stored in any arbitrary set of locations

Maintain a table such that the ith table entry tells us where the ith

element is stored

Simulated pointer

Similar to linked representation but integers replace the C++ pointers

Formulabased representation

A formulabased representation uses an array to represent the
instances of an object. Each position of the array, called a cell or a
node, holds one element that makes up an instance

of that object. Individual elements of an instance are located in the
array, based on a mathematical formula, e.g., a simple and often used
formula is

Location(i) = i − 1,

which says the ith element of the list is in position i − 1. We also need
two more variables, length and MaxSize, to completely characterize
the list type.

Linked lists

One way to overcome the inefficiency problem of the previous approach
is to assign space on a needonly base. No space will be assigned if
there is no need; and whenever there is a need, another piece of space
will be assigned to an element. Since, we can’t guarantee all the
pieces of spaces assigned at different times will be physically adjacent,
besides the space assigned for the elements, we also have to keep
track of the location information of previously assigned pieces.

Hence, in a linked representation, each element of an instance is
presented in a cell or node, which also contains a pointer that keeps
information about the location of another node.

C ont…

Circular list

□ Some application might be simpler, or run faster, by representing a
list as a circular list, and/or adding a Head node, at the front.

Doubly Linked List

Doubly linked list is a type of linked list in which each node apart from
storing its data has two links. The first link points to the previous
node in the list and the second link points to the next node in the list.
The first node of the list has its previous link pointing to N U L L
similarly the last

node of the list has its next node pointing to N U L L .

The two links help us to traverse the list in both backward and forward
direction. But storing an extra link requires some extra space.

C ont…

Indirect addressing

This approach combines the formulabased approach and that of the
linked representation. As a result, we can not only get access to
elements in Θ(1) times, but also have the storage flexibility, elements
will not be physically moved during insertion and/or deletion.

In indirect addressing, we use a table of pointers to get access to a list of
elements, as shown in the following figure.

THANK YOU…….

STACKS & QUEUES

presented by
J . KRISHNA CHANDRIKA

ASSISTANT PROFESSOR

COMPUTER SCIENCE

S tacks

A stack is a container of objects that are inserted and removed
according to the lastin firstout (LIFO) principle. In the pushdown
stacks only two operations are allowed: push the item into the stack,
and pop the item out of the stack. A stack is a limited access data
structure elements can be added and removed from the stack only at
the top. push adds an item to the top of the stack, pop removes the
item from the top. A helpful analogy is to think of a stack of books;
you can remove only the top book, also you can add a new book on the
top.

C ont…

Applications

The simplest application of a stack is to reverse a word. You push a
given word to stack letter by letter and then pop letters from the
stack.

Another application is an "undo" mechanism in text editors; this
operation is accomplished by keeping all text changes in a stack.

C O N T…

Backtracking: This is a process when you need to access the most
recent data element in a series of elements. Think of a labyrinth or
maze how do you find a way from an entrance to an exit?

Once you reach a dead end, you must backtrack. But backtrack to
where? to the previous choice point. Therefore, at each choice point
you store on a stack all possible choices.

Then backtracking simply means popping a next choice from the stack.

C ont…

Implementation
In the standard library of classes, the data type stack is an adapter class, meaning

that a stack is built on top of other data structures. The underlying structure for a
stack could be an array, a vector, an ArrayList, a linked list, or any other
collection. Regardless of the type of the underlying data structure, a Stack must
implement the same functionality.

This is achieved by providing a unique interface:

public interface StackInterface<AnyType>
{
public void push(AnyType e);

public AnyType pop();

public AnyType peek();

public boolean isEmpty();
}

C ont…

Arraybased implementation

In an arraybased implementation we maintain the following fields: an
array A of a default size (≥ 1), the variable top that refers to the top
element in the stack and the capacity that refers to the array size.
The variable top changes from 1 to capacity 1. We say that a stack is
empty when top = 1, and the stack is full when top = capacity1. In a
fixedsize stack abstraction, the capacity stays unchanged, therefore
when top reaches capacity, the stack object throws an exception. See
ArrayStack.java for a complete implementation of the stack class. In a
dynamic stack abstraction when top reaches capacity, we double up
the stack size.

C ont…

Linked Listbased implementation

Linked Listbased implementation provides the best (from the efficiency
point of view) dynamic stack implementation. See ListStack.java f or
a complete implementation of the stack class.

Q ueues

A queue is a container of objects (a linear collection) that are inserted
and removed according to the firstin first out (FIFO) principle. An
excellent example of a queue is a line of students in the food court of
the U C . New additions to a line made to the back of the queue, while
removal (or serving) happens in the front. In the queue only two
operations are allowed enqueue and dequeue. Enqueue means to
insert an item into the back of the queue, dequeue means removing
the front item. The picture demonstrates the F I F O access. The
difference between stacks and queues is in removing. In a stack we
remove the item the most recently added; in a queue, we remove the
item the least recently added.

C ont…

C ont…

Implementation

In the standard library of classes, the data type queue is an adapter class, meaning that a queue is
built on top of other data structures. The underlying structure for a queue could be an array, a
Vector, an ArrayList, a LinkedList, or any other collection. Regardless of the type of the underlying
data structure, a queue must implement the same functionality. This is achieved by providing a
unique interface.

interface QueueInterface‹AnyType>

{
public boolean isEmpty();

public AnyType getFront();

public AnyType dequeue();

public void enqueue(AnyType e);

public void clear();

}

Circular Queue

Given an array A of a default size (≥ 1) with two references back and
front, originally set to 1 and 0 respectively. Each time we insert
(enqueue) a new item, we increase the back index; when we remove
(dequeue) an item we increase the front index. Here is a picture that
illustrates the model after a few steps:

C ont…

As you see from the picture, the queue logically moves in the array from
left to right. After several moves back reaches the end, leaving no
space for adding new elements.

However, there is a free space before the front index. We shall use that
space for enqueueing new items, i.e. the next entry will be stored at
index 0, then 1, until front. Such a model is called a wrap around
queue or a circular queue

Applications

The simplest two search techniques are known as DepthFirst
Search(DFS) and BreadthFirst Search (BFS). These two searches are
described by looking at how the search tree (representing all the
possible paths from the start) will be traversed.

DeapthFirst Search with a Stack

In depthfirst search we go down a path until we get to a dead end; then
we backtrack or back up (by popping a stack) to get an alternative
path.

• Create a stack

• Create a new choice point

• Push the choice point onto the stack

•while (not found and stack is not empty)

o Pop the stack

o Find all possible choices after the last one tried

o Push these choices onto the stack

• Return

BreadthFirst Search with a Queue

In breadthfirst search we explore all the nearest possibilities by finding
all possible successors and enqueue them to a queue.

• Create a queue

• Create a new choice point

• Enqueue the choice point onto the queue

•while (not found and queue is not empty)

o Dequeue the queue

o Find all possible choices after the last one tried

o Enqueue these choices onto the queue

• Return

THANK YOU….

TREES…….

presented by
J . KRISHNA CHANDRIKA

ASSISTANT PROFESSOR

COMPUTER SCIENCE

Tree A Non Linear Data Structure

□ Tree is a non linear data structure, that is mainly used to represent
data containing a hierarchical relationship between elements. e.g.
family tree.

Binary Tree

A binary tree is a special type of tree in which every node or vertex has
either no child node or one child node or two child nodes.

Child node in a binary tree on the left is termed as ‘left child node and
in the right is termed as “right child node’’.

Types of Binary Tree

□ Full Binary Tree: It is also called proper binary tree or 2tree in
which all the node other than the leaves has exact two children.

C ont…

□ Complete Binary Tree:A binary tree which has all levels completely
filled (except last level). Last level must also be filled from left to right.

C ont…

□ Extended Binary Tree: A binary tree can be converted into an
extended binary tree by adding new nodes to it’s leaf nodes and to the
nodes that have only one child. These new nodes are added in such a
way that all the nodes in the resultant tree have either zero or two
children.

□ Threaded Binary Tree: In threaded Binary Tree the special pointer
called thread is used to point to nodes higher in the tree. (Inorder
8,4,9,2,5,1,10,6,11,3,7,12)

Memory Representation of Binary Tree

1. Array Representation of Binary Tree:

(i)Root is stored in a[0]

(ii)Node occupies a[i]

• Left child[2*i+1]

• Right child[2*i+2]

• Parent node[(i1)/2]

C ont…

2. Linked Representation of Binary Tree In this representation the
binary tree represented in memory by linked list.

Traversing Binary Tree

1. Preorder

• Process the root R.

• Traverse the left subtree of R in preorder.

• Traverse the right subtree of R in preorder.

2. Inorder

• Traverse the left subtree of R in inorder.

• Process the root R.

• Traverse the right subtree of R in inorder.

3. Postorder

• Traverse the left subtree of R in postorder

• Traverse the right subtree of R in postorder.

• Process the root R.

C ont…

P R E O R D (I N F O , L E F T , R I G H T , ROOT)

A binary tree T is in memory. The algorithm does a preorder traversal of T, applying
an operation P RO C E S S to each of its nodes. An array STAC K is used to
temporarily hold the addresses of nodes.
1. [Initially push N U L L onto STACK, and initialize PTR.]

Set TOP := 1, STACK[1] := N U L L and PTR := ROOT.
2. Repeat Steps 3 to 5 while PTR = NULL:
3. Apply P RO C E S S to INFO[PTR].
4. [Right child?]

If RIGHT[PTR] = N U L L , then: [Push on STACK.]
Set TOP := TOP + 1, and STACK[TOP] := RIGHT[PTR].

[End of If structure.]
5.[Left child?]

If LEFT[PTR] N U L L , then:
Set PTR := LEFT[PTR].

Else: [Pop from STACK.]
Set PTR := STACK[TOP] and TOP := TOP - 1.

[End of If structure.]
[End of Step 2 loop.]

6. Exit .

I N O R D(I N F O , L E F T , R I G H T , ROOT)

A binary tree is in memory. This algorithm does an inorder traversal of T, applying an
operation P RO C E S S to each of its nodes. An array S TA C K is used to temporarily hold the
addresses of nodes.
1. [Push N U L L onto S TA C K and initialize PTR.]

Set TOP := 1, STACK[1] N U L L and PTR := ROOT.
2. Repeat while PTR = NU L L : (Pushes left-most path onto STACK.]

(a)Set TOP := TOP + 1 and STACK[TOP] := PTR. [Saves node.]
(b)Set PTR := LEFT[PTR). [Updates PTR.]
[End of loop.]

3. Şet PTR := STACK[TOP] and TOP := TOP - 1. [Pops node from
STACK.]

4. Repeat Steps 5 to 7 while PTR = NU L L : [Backtracking.]
5. Apply P RO C E S S to INFO[PTR].
6. [Right child?] If RIGHT[PTR] # N U L L , then:

(a)Set PTR := RIGH[PTR].
(b)Go to Step 2
[End of If structure.]

7. Set PTR := STACK[TOP] and TOP := TOP -1. [Pops node.]
[End of Step 4 loop.]

8. Exit .

P O S T O R D(I N F O , L E F T , R I G H T , ROOT)

A binary tree T is in memory. This algorithm does a postorder traversal of T. applying an operation P RO C E S S to
each of its nodes. An array STAC K is used to temporarily hold the addresses of nodes.
1. [Push N U L L onto STAC K and initialize PTR.]

Set TOP := 1. STACK[1] := N U L L and PTR := ROOT.
2. [Push left-most path onto STACK]

Repeat Steps 3 to 5 while PTR NU L L :
3. Set TOP := TOP + 1 and STACK[TOP] := PTR.

[Pushes PTR on STACK]
4. If RIGHT[PTR] N U L L , then: [Push on STACK.]

Set TOP := TOP + 1 and STACK[TOP] := -RIGHT[PTR].
[End of If structure.)

5. Set PTR := LEFT[PTR]. [Updates pointer PTR.]
[End of Step 2 loop.)

6. Set PTR := STACK[TOP] and TOP := TOP - 1.
[Pops node from STACK.]

7. Repeat while PTR > 0:
(a) Apply P RO C E S S to INFO[PTR).
(b)Set PTR := STACK[TOP] and TOP := TOP - 1.
[Pops node from STACK.]
[End of loop.]

8. If PTR <0, then:
(a) Set PTR := -PTR.
(b)Go to Step 2.
[End of If structure.]

9. Exit.

C ont…

Searching & Inserting

If an ITE M of information is given. The following algorithm finds the
location of ITE M in the binary search tree T, or inserts ITE M as a
new node in its appropriate place in the tree.

(a) Compare ITE M with the root node N of the tree.
(i) IF ITE M <N, proceed to the left child of N.

(ii)If ITE M > N. proceed to the right child of N.
(b) Repeat Step (a) until one of the following occurs:
(i)We meet a node N such that ITE M = N. In this case the search Is
successful.
(ii)We meet an empty subtree, which indicates that the search is
unsuccessful, and we insert ITE M in place of the empty subtree.

Algo. For Location Finding
FIND(INFO, LEFT. RIGHT, ROOT. ITEM, LOC, PAR)

A binary search tree T is in memory and an ITEM of information is given. This procedure finds the location LOC of
ITEM in T and also the location PAR of the parent of ITEM. There are three special cases:
(i) LOC = NULL and PAR - NULL will indicate that the tree is empty.
(ii) LOC NULL and PAR - NULL will indicate that ITEM is the root of T.
(iii) LOC = NULL and PAR = NULL will indicate that ITEM is not in T and can be added to T as a child of the node N
with location PAR.
1. [Tree empty?]

If ROOT = NULL, then: Set LOC := NULL and PAR := NULL. And Return.
2. [ITEM at root?]

If ITEM - INFO[ROO]), then: Set LOC := ROOT and PAR = NULL, and Return.
3. [Initialize pointers PTR and SAVE.]

If ITEM <INFO[ROOT]), then:
Set PTR := LEFT[ROOT] and SAVE := ROOT.
Else:
Set PTR := RIGHT[ROOT] and SAVE := ROOT
[End of If structure.]

4. Repeat Steps 5 and 6 while PTR ≠NULL.
5. [ITEM found?]

If ITEM = INFO[PTR], then: Set LOC := PTR and PAR := SAVE and Return.
6. IF ITEM < INFO[PTR], then:

Set SAVE := PTR and PTR := LEFT[PTR].
Else:
Set SAVE := PTR and PTR := RIGHT[PTR].
[End of If structure.]
[End of Step 4 loop.]

7. [Search unsuccessful.] Set LOC:= NULL and PAR := SAVE.
8. Exit.

Insertion Algo. For B S T

INSBST(INFO, L E F T, R IG HT, RO OT, AVA IL , I T E M , LOC)
A binary search tree T is in memory and an I T E M of information is given. This algorithm finds the
location L O C of IT E M in T or adds IT E M as a new node in T at location L O C .
1. Call FIND(INFO, L E F T, R IG HT, RO OT, IT E M , L O C , PAR).

[Procedure 7.4.)
2. If L O C ≠ N U L L , then Exit.
3. [Copy IT E M into new node in AVA IL list.]

(a)I F AVA IL = N U L L , then: Write: O V E R F L O W, and Exit.
(b)Set N E W = AVA IL , AVA IL := LEFT[AVAIL] and

INFO[NEW] := IT E M.
(c)Set L O C := N E W. LEFT[NEW] := N U L L and

RIGHT[NEW] := N U L L .
4. [Add IT E M to tree.]

If PA R = N U L L , then:
Set RO OT := N E W.
Else if IT E M < INFO[PAR], then:
Set LEFT[PAR] := N E W.
Else:
Set RIGHT[PAR] := N E W.
[End of If structure.]

5. Exit.

Deletion Algo. For B S T

If T is a BST, and an ITEM of information is given, then find the location of the node
N which contains ITEM and also the location of the parent node P(N). The way N
is deleted from the tree depends primarily on the number of children of node N.
There are three cases:

Case 1. N has no children. Then N is deleted from T by simply replacing the location
of N in the parent node P(N) by the null pointer.

Case 2. N has exactly one child. Then N is deleted froin T by simply replacing the
location of N in P(N) by the location of the only child of N.

Case 3. N has two children. Let S(N) denote the inorder successor of N. (The reader
can verify that S(N) does not have a left child.) Then N is deleted from T by first
deleting S(N) from T (by using Case 1 or Case 2) and then replacing node N in T
by the node S(N).

Observe that the third case is much more complicated than the first two cases. In all
three cases, the memory space of the deleted node N is returned to the AVAIL list.

THANKYOU…..

B-TREE…

presented by
J . KRISHNA CHANDRIKA

ASSISTANT PROFESSOR

COMPUTER SCIENCE

B Tree

Definition

A B-tree of order m, if non empty, is an m-way search tree in which:
(i) the root has at least two child nodes and at most m child nodes
(ii)the internal nodes except the root have at least [m/2] child nodes
and at most m child nodes.
(iii)the number of keys in each internal node is one less than the
number of child nodes and these keys partition the keys in the
subtrees of the node in a manner similar to that of m-way search trees.
(iv)all leaf nodes are on the same level.

Example of Insertion in B Tree

Consider the B-tree of order 5 shown in Fig. 7.53. Insert the elements 4,
5, 58, 6 in the order given.

C ont…

Example of Deletion in B – Tree

C ont…

Example of Insertion

Example: Insert the keys 78, 52, 81, 40, 33, 90, 85, 20, and 38 in this
order in an initially empty B-tree of order 3

Node Searching in BTree

Search Operation
The search operation is the simplest operation on B Tree.
The following algorithm is applied:
• Let the key (the value) to be searched by "k".
• Start searching from the root and recursively traverse down.
•If k is lesser than the root value, search left subtree, if k is greater
than the root value, search the right subtree.
• If the node has the found k, simply return the node.
•If the k is not found in the node, traverse down to the child with a
greater key.
• If k is not found in the tree, we return N U L L .

THANK YOU……

